THE DIMER OF 2-METHYL-1,1-DIPHENYLPROPYL RADICALS AND ITS REACTIVITY¹⁾⁺⁾

Hans-Dieter Beckhaus, Jürgen Schaetzer and Christoph Rüchardt^{*} Chemisches Laboratorium der Universität Freiburg; Albertstr. 21, D-7800 Freiburg, GERMANY

<u>Abstract</u>: The title radicals dimerize to an α ,p-dimer $\underline{2}$ and not to an α , α -dimer $\underline{3}$ as previously⁸) assumed. The structure of the dimers of t-benzhydryl radicals Ph₂CR in general is strongly dependent on the bulkiness of the R group.

Benzyl type radicals $\underline{1}$ can dimerize to form either α, α -dimers $\underline{3}$ or α, p -dimers $\underline{2}^{2)}$. The latter dimerisation process seems to be favoured

by bulky groups R and R' in 1. Only the α ,p-dimers of $\underline{1a}^{2-4}$, $\underline{1b}^{5}$ and $\underline{1c}^{5}$ have been isolated in crystalline state, but no α ,p-dimer of a benzhydryl type radical⁴). The isolation of α ,p-dimers is frequently prevented by their fast transformation into α, α -dimers 3 by reversible dissociation^{2,6} to 1 or by a radical chain process⁷. In addition 2 is easily oxidized by air to an hydroperoxide^{2,5} or tautomerized to the aromatic species 4 under acid catalysis^{2,5,7}. The instability of 2 has been taken therefore as a characteristic feature to distinguish between 2 and the more stable α, α -dimer 3 2,4a,b. It will be shown in this communication that this simple rule does not hold for the dimers of t-benzhydryl radicals 1 (R=C₆H₅, R'=alkyl).

3308

When we repeated K. Zieglers procedure for the preparation of $\underline{3d}^{8}$, we obtained a product with the reported melting point⁸, which turned out, however, to be the α ,p-dimer $\underline{?d}$ according to its spectra. $\underline{3e}$ in contrast was obtained by the same procedure without interference of $\underline{2e}$. The uv absorption of $\underline{2d}$ in cyclohexane at 270 nm(log $\varepsilon = 4.17$) is in agreement with literature values for other α ,p-dimers⁴,⁵. The well resolved ¹H-nmr spectrum is shown in fig. 1. The chemical shifts of the olefinic protons at $\delta=4.59-6.65$ ppm ($J_{b,d}=J_{c,e}=10.7$ Hz; $J_{a,b}=J_{a,c}=2.6$ Hz) and of the double allylic H at $\delta=4.32$ ppm are of the expected magnitude^{3b,4,5,9}. The poor signal to noise ratio of the ¹³C-nmr spectrum recorded at -30° C in CDCl₃ prevented a complete analysis. Three aromatic C-signals and one additional for the exo-methylene carbon appeared in the region of quaternary aromatic carbons ¹⁰ (138.9-141.9) ppm), and one signal in the region of quaternary aliphatic carbons ¹⁰

After $\underline{2d}$ was kept at 22° C in a benzene solution of thiophenol (10 vol.%) for 16 h, 80% 2-methyl-1,1-diphenylpropane $\underline{5}$ was then analyzed by GC, indicating homolytic cleavage of $\underline{2d}$ into radicals $\underline{1d}$ and their trapping by thiophenol. After treatment with 2 vol.% CF₃COOH in CH₂Cl₂ at -10 to 20° C isomerisation $\underline{2d} \rightarrow \underline{4d}$ was *not* observed but instead 2-methyl-1,1-diphenylpropane $\underline{5}$ and 2-methyl-1.1-diphenylpropene $\underline{7}$ (~1:1 ratio) were formed immediately as main products according to GC and nmr analysis. A retro Friedel Crafts reaction

which is favoured by the stability of the carbeniumion $\underline{6}$ appears to be responsible for this. For $\underline{2}\underline{a}$ an analogous cleavage was reported under SbCl₅ catalysis^{3b)}, but this reaction was never observed for α ,p-dimers of benzyl radicals.

In summary, the relative stability of α, α -dimers $\underline{3}$ and α, p -dimers $\underline{2}$ is not so much dependent on the semibenzene - benzene energy difference of ca. 7-8 kcal/mole^{3b)} as on the difference in ground state strain¹¹⁾. The correlations in fig. 2 point out that the dimers of t-benzhydryl radicals are divided into two groups according to the varying response of their thermal stability to the bulk of the R group as expressed by the steric substituent constants $\mathbf{Y}_{f}^{(12)}$ of the fragment Ph₂CR. It follows from fig.2 that, in contrast to Zieglers original view⁸⁾, the dimers of 1-cyclopentyl-, 1-cyclohexyl- and 1-t-butyl-benzhydryl radicals are also α, p -dimers $\underline{2}$. The steric substituent constants $\mathbf{Y}_{f}^{(12)}$ have accordingly high predictive power for the preferred dimer structure in this series. The stabilities of the α, α -dimers $\underline{3}$ respond much more sensitively to the bulkiness of R than that of the α, p -dimers $\underline{2}$ do.

<u>Fig.1</u> ¹H nmr spectrum of $\underline{2d}$ in CDCl₃ (250 MHz) (*) impurity

Fig. 2 Relationships between thermal stability $(\log \sqrt{k})^{8,9}$ of α, α -dimers (**O**) or α, p -dimers (**O**) of t-benzhydryl radicals Ph₂CR and steric substituent constants **9**_f¹²⁾ of the Ph₂CR fragments. R groups are shown in the fig.

References

- ⁺⁾This paper is dedicated to Prof. A. Steinhofer on the occasion of his 75th birthday.
- Thermolabile Hydrocarbons XXIII; for paper XXII see G. Kratt, H.-D. Beckhaus and C. Rüchardt, Chem.Ber., in preparation.
- J.M. McBride, Tetrahedron <u>30</u>, 2009 (1974); K.J. Skinner, H.S. Hochster and J.M. McBride, J.Am.Chem.Soc. <u>96</u>, 4301 (1974).
- 3. 3a) H.A. Staab, H. Brettschneider and H. Brunner, Chem.Ber. <u>103</u>, 1101 (1970).
 - 3b) H. Volz, W. Lotsch and H.-W. Schnell, Tetrahedron 26, 5343 (1970).
 - 3c) For an X-ray analysis of <u>2a</u> see J. Allemand and R. Gerdil, Acta Cryst. <u>B34</u>, 2214 (1978); for an X-ray analysis of a related α,α-dimer see M. Stein, W. Winter and A. Rieker, Angew.Chem. <u>90</u>, 737 (1978), Angew.Chem.Int.Ed.Engl. <u>17</u>, 692 (1978); see also E. Osawa, Y. Onuki and K. Mislow, J.Am.Chem.Soc. <u>103</u>, 7475 (1981).
- 4. for solution work see
 - 4a) H. Lankamp, W. Th. Nauta and C. McLean, Tetrahedron <u>1968</u>, 249.
 - 4b) J. Coops, W.Th. Nauta, M.J.E. Ernsting and A.C. Faber, Rec.trav. chim. <u>59</u>, 1109 (1940) and further papers in this series.
 - 4c) C.S.W. Hook, Tetrahedron 1975, 3321.
 - 4d) W.B. Smith, G.D. Branum and C. Saint, J.Org.Chem., in print.
- 5. G. Kratt, H.-D. Beckhaus, H.J. Lindner and C. Rüchardt, Chem.Ber., in print.
- 6. see also Dissertation H.-D. Beckhaus, Universität Freiburg 1975.
- 7. H. Langhals and H. Fischer, Chem.Ber. <u>111</u>, 543 (1978).
- K. Ziegler, A. Seib, K. Knoevennagel, P. Herte and F. Andreas, Liebigs Ann.Chem. <u>551</u>, 150 (1942).
- 9. for details see Diplomarbeit J. Schaetzer, Universität Freiburg 1983.
- 10. M.I. Watskins and G.A. Olah, J.Am.Chem.Soc. <u>103</u>, 6566 (1981).
- see also C. Rüchardt and H.-D. Beckhaus, Angew.Chem. <u>92</u>, 417 (1980); Angew.Chem., Int.Ed.Engl. <u>19</u>, 429 (1980).
- H.-D. Beckhaus, Angew.Chem. <u>90</u>, 633 (1978); Angew.Chem., Int.Ed.Engl. <u>17</u>, 593 (1978).

(Received in Germany 12 May 1983)